Análisis Bayesiano: conceptos y fundamentos

Análisis Bayesiano: conceptos y fundamentos

Bayes 2 Autores: Daniel R. Hernández.
2012. 80 p.
ISBN 978-987-1443-08-6. (Publicaciones Especiales INIDEP).
Consultar índice de contenidos

Citar como:
Hernández, D. 2012. Análisis bayesiano : conceptos y fundamentos. Mar del Plata : Instituto Nacional de Investigación y Desarrollo Pesquero INIDEP. 80 p.

¿Cómo comprar esta publicación?

 

Resumen

Se presenta el Análisis Bayesiano desde una perspectiva conceptual. Se confronta la escuela bayesiana con la escuela frecuencista clásica y se discuten virtudes y defectos de cada una. Se muestra cómo se puede introducir el concepto de probabilidad como grado de creencia a partir del razonamiento plausible presentado como generalización de la lógica aristotélica al tener que razonar en condiciones de incertidumbre. Se discute el teorema de Cox que demuestra que las leyes que gobiernan el razonamiento plausible son equivalentes a las leyes que gobiernan el cálculo de probabilidades. Se analiza el concepto de verosimilitud y se demuestra el teorema de Bayes que constituye, junto al concepto de probabilidad como grado de creencia, el otro pilar sobre el que se fundamenta el Análisis Bayesiano. Se introduce el concepto de intercambiabilidad y se evalúan sus consecuencias teóricas. Se analiza en profundidad el concepto de distribución difusa o poco informativa. Se aborda en detalle el Principio de Máxima Entropía como procedimiento orientado a la obtención de priors que incluyan sólo la información disponible antes de la toma de nuevos datos. Se presenta y desarrolla en detalle el Análisis de Referencia como metodología para obtener distribuciones a priori lo más difusas posibles y distribuciones a posteriori que expresen esencialmente la información contenida en los datos. Se analiza la convergencia asintótica de la distribución a posteriori. Se esboza el concepto del Análisis de Bayes Jerárquico. Se introducen los conceptos básicos de la Teoría de la Decisión en el contexto bayesiano. Se aborda el problema de la comparación de modelos. Se discuten someramente los algoritmos de cálculo numérico que se usan con más frecuencia para efectuar un Análisis Bayesiano. Se introducen ideas sobre el Análisis Bayesiano en pesquerías y se discuten las fuentes de incertidumbre a tener en cuenta en un análisis.

Bayesian Analysis: concepts and grounds. The Bayesian Analysis is introduced from a conceptual framework. The Bayesian school of thought is confronted to the classical frequentist school and the virtues and defects of each are discussed. It is shown how the concept of probability as degree of belief from plausible reasoning may be introduced, presented as a generalization of the aristotelian logic when reasoning under uncertain conditions. Cox’s theorem, which demonstrates that laws governing plausible reasoning are equivalent to laws governing probability calculus, is discussed. The likelihood concept is analyzed and Bayes’ theorem which, together with the concept of probability as degree of belief are the pillars upon which Bayesian Analysis is based, is demonstrated. The concept of interchangeability is introduced and its theoretical consequences are analyzed. The concept of diffuse or noninformative distribution is considered in depth. The Maximum Entropy Principle as a procedure oriented to obtain priors including all possible information before getting new data is thoroughly discussed. The Reference Analysis is introduced and developed in detail as a methodology to obtain a priori distributions as diffuse as possible and a posteriori distributions essentially expressing all information contained in data. The asymptotic convergence of the a posteriori distribution is analyzed. The concept of hierarchical Bayes’ Analysis is sketched. The basic concepts of the Decision Theory in the Bayesian framework are introduced. The problem of Model Comparison is shown. The numerical calculus algorithms most frequently used for a Bayesian Analysis are briefly discussed. Ideas on the Bayesian Analysis in stock assessment are introduced and uncertainty sources to be considered in an analysis are listed.